Grey system theory-based models in time series prediction

نویسندگان

  • Erdal Kayacan
  • Baris Ulutas
  • Okyay Kaynak
چکیده

Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecasting models that have different mathematical backgrounds, such as artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, the accuracies of different grey models such as GM(1,1), Grey Ver-hulst model, modified grey models using Fourier Series is investigated. Highly noisy data, the United States dollar to Euro parity between the dates 01.01.2005 and 30.12.2007, are used to compare the performances of the different models. The simulation results show that modified grey models have higher performances not only on model fitting but also on forecasting. Among these grey models, the modified GM(1,1) using Fourier series in time is the best in model fitting and forecasting. A time series is a collection of data points which are generally sampled equally in time intervals. Time series prediction refers to the process by which the future values of a system is forecasted based on the information obtained from the past and current data points. Generally, a pre-defined mathematical model is used to make accurate predictions. Time series prediction models are widely used in financial area, such as predicting stock price indexes , foreign currency exchange rates (FX rates) and so on. The ability to do prediction with a reasonable accuracy can change the economic policy of large companies and governments and ensure a more reasonable behavior by the financial actors. Statistical and artificial intelligence (soft computing) based approaches are the two main techniques for time series prediction seen in the literature. are widely used as an artificial intelligence based approach, back propagation being the most widely used technique for updating the parameters of the model. However , not only are the statistical models not as accurate as the neu-ral network-based approaches for nonlinear problems, they may be too complex to be used in predicting future values of a time series. One major criticism about the NN model is that it demands a great deal of training data and relatively long training period for robust generalization (Jo, 2003). Other intelligent approaches seen in the literature for the analysis of time series include Linear regression, a combination of genetic algorithms and neural networks has been …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Grey System Theory in Rainfall Estimation

Considering the fact that Iran is situated in an arid and semi-arid region, rainfall prediction for the management of water resources is very important and necessary. Researchers have proposed various prediction methods that have been utilized in such areas as water and meteorology, especially water resources management. The present study aimed at predicting rainfall amounts using Grey Predicti...

متن کامل

Prediction of Renewable Energy Production Using Grey Systems Theory

Due to the reduction of renewable energy resources such as fossil fuels, the energy crisis is one of the most critical issues in today’s world. The application of these resources brings about many environmentalpollutionsthatleadtoglobalwarming. Therefore,variouscountrieshaveattemptedto reducepotentialdamageanduserenewableenergiesbytheintroductionandpromotionofrenewable energies as an essential ...

متن کامل

Grey prediction in linear programming problems

The purpose of this paper is describes the use of grey pridiction in linear programming problems. Some definitions and concepts of grey system theory are introduced and then, we introduced GM(1,1) and fractional order accumulation into grey model. Due to the fluctuation of prices and the lack of certainty data in the market, optimal production was calculated to optimize the profit from sales us...

متن کامل

A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting

Grey prediction models for time series have been widely applied to demand forecasting because only limited data are required for them to build a time series model without any statistical assumptions. Previous studies have demonstrated that the combination of grey prediction with neural networks helps grey prediction perform better. Some methods have been presented to improve the prediction accu...

متن کامل

River Discharge Time Series Prediction by Chaos Theory

The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010